
MONORAIL MINIATURE A BILLES

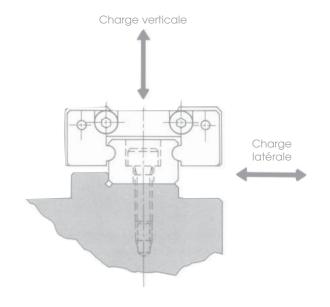
Désignation

Les désignations suivantes permettent de définir parfaitement un guidage à billes sur rail. Lors de votre commande il est essentiel de nous communiquer la désignation complète en vous aidant des éléments ci-dessous.

Précharge

	Pr	échar	ge
Taille	jeu	légère	moyenne
	TO		T1
2		_	
3	+1~+3		-
5		-1~0	
7			
9	+3~+6		-4~-2
12		-3~0	
15	+4~+8		-7~-3
20	74.110		,
3W	+1~+3	-	-
5W	+1+0	-1~0	-
7W			
9W	+3~+6	-3~0	-4~-2
12W		0.30	
15W	+4~+8		-7~-3

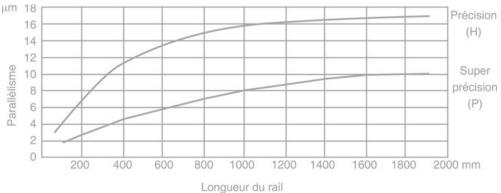
Type de	Sym-	Condition d'utilisation	Exemples d'applications
précharge	bole		
Moyenne	T1	Vibrations légères, charges légères ou soumis à couple. Utilisation d'un seul guide.	Petites machines à percer les circuits imprimés, électrosta- tiques, lasers et toutes petites machines en général.
Légère		Montage avec direction de charge constante peu d'impact ou vibrations. Utilisation avec 2 guides en parallèle.	Soudeuses, machines d'em- ballage, axe XY, changeurs d'outils, etc
Jeu	TO	Compensation d'erreur de montage	

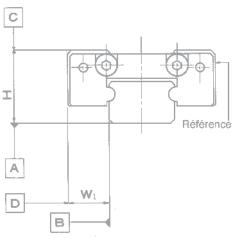

en stock : <u>précharge légère</u>

Modification de charges

Cœfficient correcteur de charge (indiquée dans les tableaux dimentionnels) en fonction de la direction de la charge.

unit/µm


		types B	types A
Charge	verticale	1.00 x C	1.00 x C
dynamique	latérale	0.89 x C	1.13 x C
Charge	verticale	1.00 x C0	1.00 x C0
statique	latérale	0.84 x C0	1.19 x C0

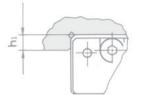


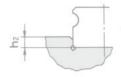
Δ1

Précision

www.rodavigo.net

Classe de précision	Précision (H)	Super précision (P)
Tolérance cote H	± 0.020	± 0.010
Variation de H pour 2 patins sur 1 rail	0.015	0.007
Tolérance cote W	± 0.025	± 0.015
Variation de W pour 2 patins sur 1 rail	0.020	0.010


unité : mm


en stock : classe précision (H)

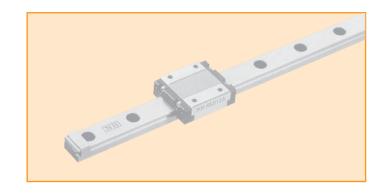
Instruction de montage

Préparation des surfaces de montage

Pour un montage parfait des guidages à billes sur rail **NB**, les valeurs limites mentionnées dans le tableau sont à respecter lors de la préparation et de l'usinage des surfaces de montage.

Taille	Dimension de l'é	paulement (mm)
raile	h_1	h_2
2	1	0.5
3	1,2	0.8
5	2	1
7	2.5	I
9	3	1.5
12	4	2
15	5	3.5
20	Ö	5
3W	1.5	0.8
5W	2	1
7W	2	1.5
9W	3	
12W	4	2.5
15W	5	

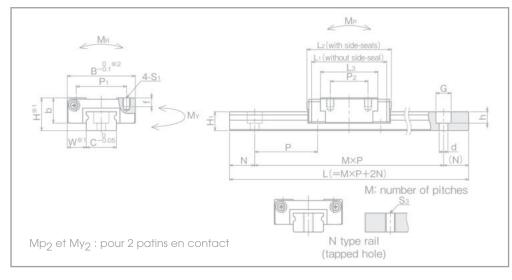
Le tableau ci-contre indique les couples de serrage recommandés pour le montage des rails sur les bâtis de machine.


Couples de serrage (unité = N.m)

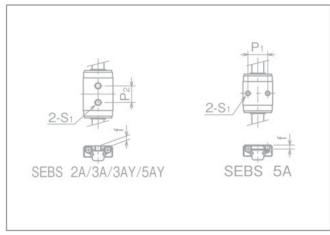
Dimension de vis	Couple de serrage
M2	0,4
M3	1,0
M4	2,5
M5	4,9

PATIN SEB . . A

(sans retenue de billes)

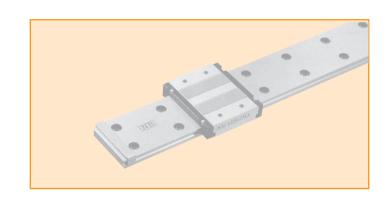


Tailles	Longueur de fabrication des rails en mm L																			
2	32	40	56	80	104															
3	30	40	60	80	100															
5	40	55	70	85	100	115	130	145	160											
7	40	55	70	85	100	115	130	145	160	175	190	205	220	235	250	265	280	295	310	
9	55	75	95	115	135	155	175	195	215	235	255	275	295	315	335	355	375	395	415	435
12	70	95	120	145	170	195	220	245	270	295	320	345	370	395	420	445	470	495		
15	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630	670				
20	220	280	340	400	460	520	580	640		760	820		940	1000						


Dátás	ence				din	nension	s en mi	m			
Kelei	ence	Н	W	В	L ₁	L ₂	P ₁	P_2	S ₁	f	L ₃
Version acier	Version inox										
_	SEBS 2A	3.2	2	6	12.9	14.3	-	4	M1.4	1.05	9.3
	SEBS 3A	4	2.5	8	10.5	11.8	-	3.5	M1.6	1.3	6.5
_	SEBS 3AY		2.0	O	14.5	15.8	-	5.5	M2	1.0	10.5
	SEBS 5A	6	3.5	12	15.6	17	8		M2	1.5	9.8
_	SEBS 5AY	0	0.0	1 Z	19.2	20.6	-	7	M2.6	1.8	13.4
	SEBS 7A	8	5	17	21.9	24	12	8	M2	2.5	15.1
_	SEBS 7AY	0	J	1 /	31	33	12	13	IVIZ	2.0	24.6
SEB 9A	SEBS 9A	10	5.5	20	28.1	29.5	15	10		3	20.4
SEB 9AY	SEBS 9AY	10	0.0	20	38.1	40		16			30.4
SEB 12A	SEBS 12A	13	7.5	27	30	33.5	20	15	M3	3.5	22.8
SEB 12AY	SEBS 12AY	10	7.0	21	42	45.5	20	20	1010	0.0	34.7
SEB 15A	SEBS 15A	16	8.5	32	38.5	42	25	20		4	29.5
SEB 15AY	SEBS 15AY	10	0.0	02	54.5	58	20	25		4	45.4
SEB 20A	SEBS 20A	25	13	46	55.7	61	38	38	M4	6	45.7
SEB 20AY	SEBS 20AY	20	10	40	79.5	85	J0	30	IVI↔	U	69.5

www.rodavigo.net

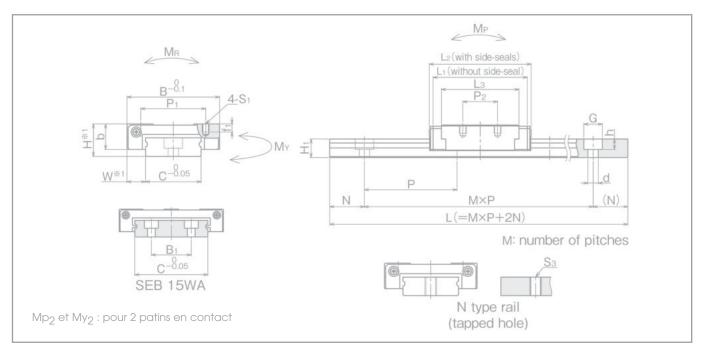
	Long.	maxi	Turo o N
	acier	inox	Type N
		_	150
			150
	_	300	300
			700
455 475	500	1 000	500
	500	1 000	1000
	1 900	1 000	1900
	1 900	1 000	1900

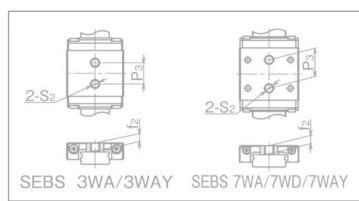


		dime	nsions en mm				Cho	irges	1	Vomer	†			
b	H ₁	С	dxGxh	S ₃	Ν	Р	dyn.	stat.		statique		Ро	ids	W . 111 .
							C kN	C0 kN	Mp Mp ₂ Nm	My My ₂ Nm	Mr Nm	patin (g)	rail g/100 mm	Taille
2.5	2	2	-	M1	4	8	0.21	0.38	0.53 2.77	0.64 3.30	0.41	0.8	2.8	2A
3	2.6	3	_	M1.6	5	10	0.25	0.36	0.39 2.42	0.46 2.88	0.57	1	5	3A
J	2.0	0	_	1011.0	J	10	0.35	0.58	0.97 5.18	1.16 6.18	0.93	2		3AY
4.5	4	5	0.4 v 0.5 v 1	N 10 6			0.59	0.81	1.32 8.05	1.58 9.60	2.11	4	13	5A
4.5	4	Э	2.4 x 3.5 x 1	M2.6	5	15	0.74	1.11	2.39 13.2	2.86 15.7	2.90	5	10	5AY
6,5	4.7	7	2.4 x 4.2 x 2.3	M3	5	13	1.08	1.41	3.07 18.9	3.66 22.6	5.18	11	21	7A
0.0	4.7	/	Z.4 X 4.2 X 2.3	IVIO			1.59	2.48	8.74 45.1	10.4 53.8	9.07	16	21	7AY
7.8	5.5	9	3.5 x 6 x 3.5	M4	7.5	20	1.92	2.53	7.64 43.1	9.11 51.3	11.5	19	30	9A
7.0	0.0	7	3.3 x 0 x 3.3	1714	7.0	20	2.62	3.94	17.5 88.5	20.8 105	17.9	28	00	9AY
10	7.5	12		M4	10	25	2.60	3.20	10.4 57.0	12.4 68.0	20.0	37	60	12A
10	7.0	12	3.5 x 6 x 4.5	1714	10	20	3.65	5.21	25.7 127	30.7 151	32.6	55	00	12AY
12	9.5	15	0.0 x 0 x 4.0	M5	15	40	4.74	5.67	24.5 131	29.2 157	43.9	68	100	15A
12	7.0	10		IVIO	10	40	6.65	9.22	60.7 295	72.4 351	71.4	101	100	15AY
17.8	15	20	6 x 9.5 x 8.5	M6	20	60	8.99	11.1	72,7 367	86.7 437	114	226	209	20A
17.0	10	20	0 / 7.0 / 0.0	1010	20	00	12.4	17.8	176 823	210 981	182	338	207	20AY

PATIN SEB .. W ..

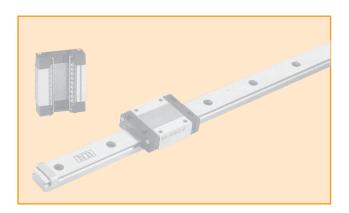
(sans retenue de billes)


Tailles	Longueur de fabrication des rails en mm	Long.	Type	
Tomoo	L	acier	inox	Ň
3WA	40 55 70 85 100	500	150	150
7WA	50 80 110 140 170 200 230 260 290 320 350 380 410 440 470			700
9WA	50 80 110 140 170 200 230 260 290 320 350 380 410 440 470 500 530			
12WA	70 110 150 190 230 270 310 350 390 430 470 510 550 590 630 670 710	1300	1000	1000
15WA	70 110 150 190 230 270 310 350 390 430 470 510 550 590 630 670 710 750 790 830 870			


Référe	nco						(dimen	sions er	n mm				
Refere		Н	W	В	L ₁	L ₂	P ₁	P_2	S ₁	f ₁	L ₃	P_3	S_2	f_2
Version acier, cage résine	Version inox, cage résine													
_	SEBS 3WA	4.5	3	12	14.2	15	-	_	-	-	9.7	4.5	M2	1.7
	SEBS 3WAY				19	19.8					14.5	8	IVIZ	
	SEBS 7WA				30.1	32	18	12	M2.6	2.5	22.1	12		
_	SEBS 7WD	9	5.5	25	30.1	32	19	10	M3	2.8	ZZ. I	12	M4	3.5
	SEBS 7WAY				39.6	41	19	19	IVIS	2.0	31.6	18		
SEB 9WA	SEBS 9WA				35.9	38	21	12	M2.6	3	28.4			
SEB 9WD	SEBS 9WD	12	6	30	00.7	50	Z I	12		2.8	20.4			
SEB 9WAY	SEBS 9WAY				48	50	23	24	M3	3	40.4			
SEB 12WA	SEBS 12WA	14	8	40	40.7	44	28	15	IVIO	3.5	33.5			
SEB 12WAY	SEBS 12WAY	14	O	40	55	58.5	20	28		3.0	47.8			_
SEB 15WA	SEBS 15WA	16	9	60	51.2	55	45	20	- M4	4.5	42			
SEB 15WAY	SEBS 15WAY	.0	7	00	70.5	74	40	35	1014 4.	4.0	61.1		_	

www.rodavigo.net

+34 986 288118 Servicio de Att. al Cliente



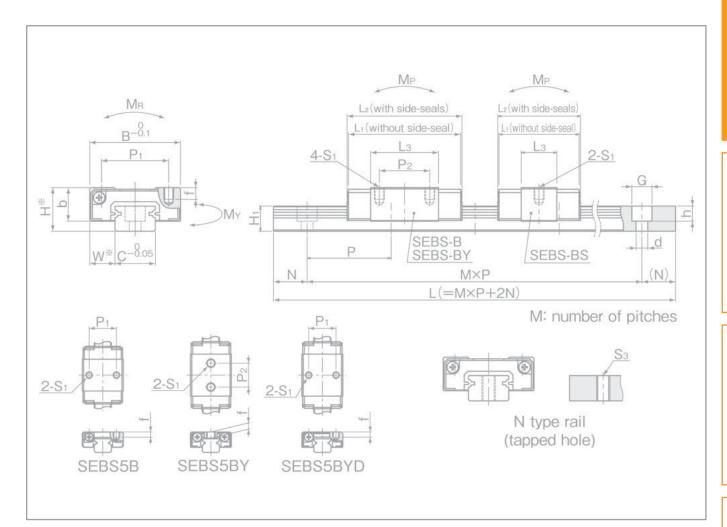
		din	nensio	ns en mm				Cho	ırges	-	Vomer	ı†			
b	H ₁	С	B ₁	dxGxh	S ₃	Ν	Р	dyn.	stat.	statique			Poi	ids	W - 211 -
								C kN	C0 kN	Mp Mp ₂ Nm	My My ₂ Nm	Mr Nm	patin (g)	rail g/100 mm	Taille
3.5	2.6	6		2.4x4x1.5	M3	5	15	0.33	0.54		0.99 5.65	1.67	3	10	3WA
0.0	2.0			Z,4A4A1.O	1010	J	10	0.44	0.81		2.15 11.0	2.51	4	10	3WAY
								1 40	0.10	6.53 38.2	7.78 45.6	15.0	21		7WA
7	5.2	14		3.5x6x3.2				1.43	2.12	6.53 38.2	7.78 45.6	15.2	21	51	7WD
					M4	10	30	1.90	3.19	14.1 73.8	16.8 87.9	22.8	30		7WAY
					1714	10	30	2.49	3.66		18.1 92.5	33.9	38		9WA
9	7.5	18		3.5x6x4.5				2,49	3,00		18.1 92.5	00.9		96	9WD
								3.25	5.35		37.4 178	49.5	55		9WAY
11	8	24						3.64	5.21	25.7 126	30.7 150	63.8	77	138	12WA
11	O	24		4.5x8x4.5	M5	15	40	4.75	7.62	53.2 245	63.4 292	93.3	109	130	12WAY
13	9.5	42	23	4.0004.0	1010	10	40	6.29	8.51	52.2 258	62.2 307	180	154	294	15WA
10	7.0	42	20					8.35	12.7	113 525	134 625	271	222	274	15WAY

PATIN SEBS . . B

(avec retenue de billes)

• TYPE SEBS-B

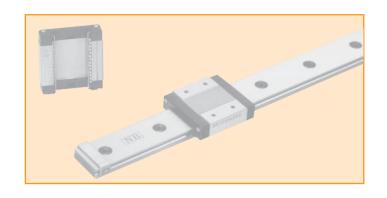
• TYPE SEBS-BM



Tailles	Longueur de fabrication des rails en mm L	Long. maxi inox	Type N
5	40 55 70 85 100 115 130 145 160	300	300
7	40 55 70 85 100 115 130 145 160 175 190 205 220 235 250 265 280 295 310		700
9	55 75 95 115 135 155 175 195 215 235 255 275 295 315 335 355 375 395 415 435 455 475		
12	70 95 120 145 170 195 220 245 270 295 320 345 370 395 420 445 470 495	1000	1000
15	70 110 150 190 230 270 310 350 390 430 470 510 550 590 630 670		
20	220 280 340 400 460 520 580 640 700 760 820 880 940 1000		

Référe	2000				din	nension	s en m	m			
Kelele					L ₁	L ₂	P ₁	P_2	S ₁	f	L ₃
Version inox, cage résine	Version inox, cage inox										
SEBS 5B	SEBS 5BM				16.5	16.9	8		M2	1.5	9.3
SEBS 5BY	SEBS 5BYM	6	3.5	12	19.5	19.9		7	M2.6	1.8	12.3
SEBS 5BYD	SEBS 5BYDM				1 7 1 40		8	—	M2	1.5	
SEBS 7BS	SEBS 7BSM				18.2	19				0.5	8.8
SEBS 7B	SEBS 7BM	8	5	17	22.2	23	12	8	M2	2.5	12.8
SEBS 7BY	SEBS 7BYM				31.7	32.5		13			22.3
SEBS 9BS	SEBS 9BSM				20.5	21.3				3	10.1
SEBS 9B	SEBS 9BM	10	5.5	20	30	30.8	15	10		3	19.6
SEBS 9BY	SEBS 9BYM				39.5	40.3		16			29.1
SEBS 12BS	SEBS 12BSM				24.2	24.6				3.5	10.6
SEBS 12B	SEBS 12BM	13	7.5	27	33.8	34.2	20	15	M3	3.5	20.2
SEBS 12BY	SEBS 12BYM				45.7	46.1		20			32.1
SEBS 15BS	SEBS 15BSM				30	30.4				4	15
SEBS 15B	SEBS 15BM	16	8.5	32	42.6	43	25	20		4	27.6
SEBS 15BY	SEBS 15BYM				58.6	59		25			43.6
SEBS 20B	SEBS 20BM	25	13	46	65.9	65.9	38	38	M4	6	44.7
SEBS 20BY	SEBS 20BYM	20	13	40	85.7	85.7	50	30	IVI4	O	64.5

Rail et Patin en acier inoxydable

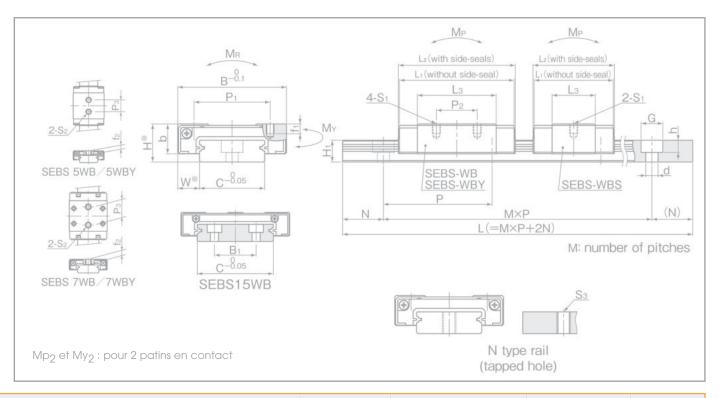


		dimer	nsions en mm				Cho	ırges	ľ	Vomer	ı†		Poids		
b	H ₁	С	d x G x h	S ₃	Ν	Р	dyn.	stat.	statique		р	atin	g	Todllo	
							C kN	Co kN	Mp Mp ₂ Nm	My My ₂ Nm	Mr Nm	cage résine	cage inox	rail g/100 mm	Taille
4.5	4	5	2.4 x 3.5 x 0.8				0.52	0.75			1.96	3	4	13	5B
					5	15	0.64	1.00			2.62	4	5		5BY
					3	15	0.92	1.05	1.57 13.6 3.66 25.4 10.4 59.1	1.32 11.4	3.86	7	10		7BS
6.5	4.7	7	2.4 x 4.2 x 2.3	M3			1.28	1.69	3.66 25.4	3.07 21.3 8.75 49.6	6.18	9	12	21	7B
							1.90	2.95	10.4 59.1	8.75 49.6	10.8	15	18		7BY
							1.05	1.26			5.90	11	15		9BS
7.8	5.5	9	3.5 x 6 x 3.5	M4	7.5	20	1.70	2.53			11.80	18	22	31	9B
							2.26	3.80		14.1 77.0	17.7	27	31		9BY
							1.90	1.91	3.63 32.4 12.4 81.3	3.04 27.2 10.4 68.2	11.9	21	30		12BS
10	7.5	12		M4	10	25	3.09	3.82	12.4 81.3	10.4 68.2	23.9	35	44	59	12B
			3.5 x 6 x 4.5				4.34	6.21	30.7 170	25.7 143	38.9	53	62		12BY
							3.49	3.38			26.2	40	53		15BS
12	9.5	15		M5	15	40	5.65	6.76			52.4	64	77	97	15B
							7.93	10.9	72.4 379	60.7 318	85.1	98	110		15BY
17.5	15	20	6 x 9.5 x 8.5	M6	20	60	11.4	14.5	103 591	87 496	149	228	266	205	20B
17.0	10	20	0 / 7.0 / 0.0	1010	20	00	14.8	21.2	210 1080	176 914	217	323	360	200	20BY

PATIN SEBS-WBS/WB/WBY

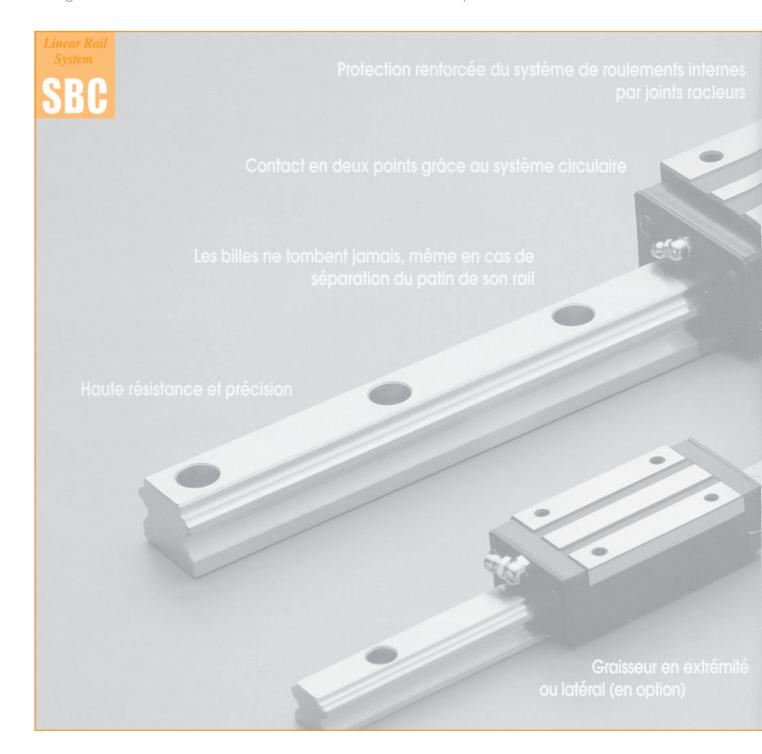
RAILS ET PATINS EN ACIER INOXYDABLE

Tailles	Longueur de fabrication des rails en mm L	Long. maxi inox	Type N
5	50 70 90 110 130 150 170 190	500	500
7	50 80 110 140 170 200 230 260 290 320 350 380 410 440 470	700	700
9	50 80 110 140 170 200 230 260 290 320 350 380 410 440 470 500 530		
12	70 110 150 190 230 270 310 350 390 430 470 510 550 590 630 670 710	1000	1000
15	70 110 150 190 230 270 310 350 390 430 470 510 550 590 630 670 710 750 790 830 870		

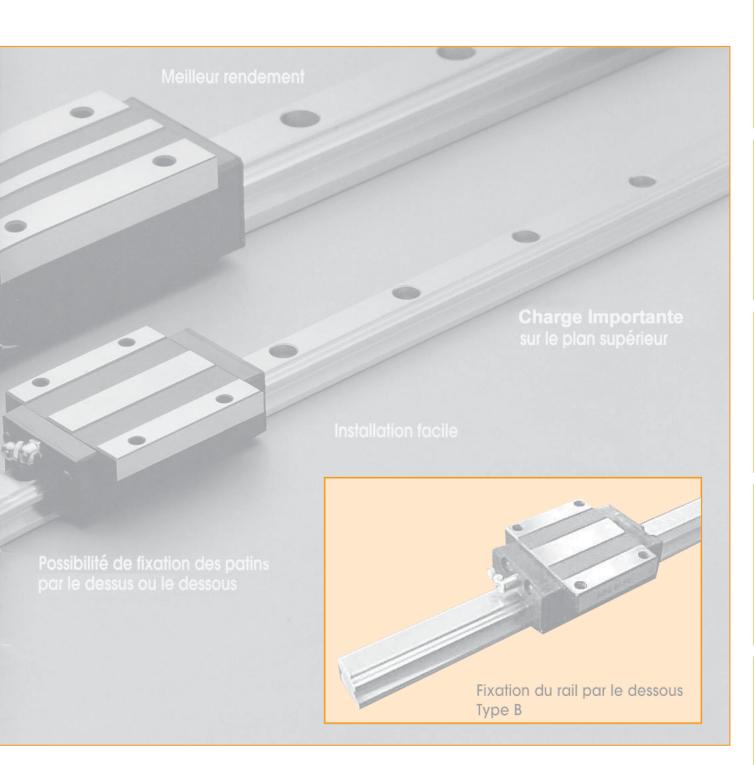

					dime	ension	s en n	nm						
Version inox, cage résine	Н	W	В	L ₁	L ₂	P ₁	P ₂	S ₁	f ₁	L ₃	P ₃	S ₂	f ₂	b
SEBS 5WB	4 5	3.5	17	21.5	21.9		OME			14.3	6.5	- M3	2.3	5
SEBS 5WBY	6.5	3.3	17	27.5	27.9	_		_	-	20.3	11	IVIO	2.0	Э
SEBS 7WBS				21.1	21.9		-			10.7	-	-	-	
SEBS 7WB	9	5.5	25	30.6	31.4	19	10			20.2	12	M4	3.5	7
SEBS 7WBY				39.3 40.1 19 N	M3	2.8	28.9	18	1014	0.0				
SEBS 9WBS				24.2	25	21	0000			13			-	9
SEBS 9WB	12	6	30	37.5	38.3	Z I	12			26.3	-	_		
SEBS 9WBY				49.5	50.3	23	24		3	38.3				
SEBS 12WBS				29.7	30.1		-			15.9				
SEBS 12WB	14	8	40	42.8	43.2	28	15	M3	3.5	29	-	-	-	11
SEBS 12WBY				58.3	58.7		28			44.5				
SEBS 15WBS				39.4	39.8		-			24				
SEBS 15WB	16	9	60	54.2	54.6	45	20	M4	4.5	38.8	-	_	-	13
SEBS 15WBY				73.3	73.7		35			57.9				

Monorail

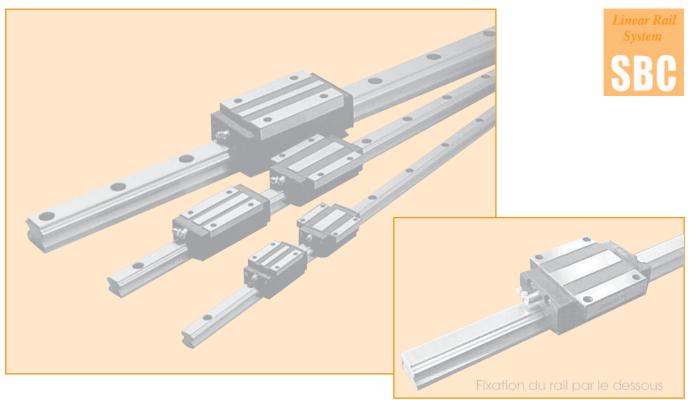
+34 986 288118



H ₁	С	dir B ₁	mensions en mm d x G x h	S_3	Ν	Р	Cha dyn.	rges stat.		Momen statique		Ро	ids			
							C kN	Co kN	Mp Mp ₂ Nm	My My ₂ Nm	Mr Nm	patin g	rail g/100 mm	Taille		
4	10	_	3x5.5x3	M3	5	20	0.71	1.17	2.60 15.2	2.18	5.99	7	- 26	5 WB		
4	10	_	3x0.0x0	IVIO	J	20	0.91	1.68	5.16 27.3	4.33 22.9	8.56	10	20	5 WBY		
							1.05	1.26	2.17 18.2	1.82 15.2	9.07	12		7 WBS		
5.2	14	-	3.5x6x3.2				1.71	2.53	7.78 48.2	6.53 40.4	18.1	20	51	7 WB		
				M4	10	30	30	2.26	3.8	16.8 91.7	14.1 77.0	27.2	28		7 WBY	
				IVI	10	00	1.73	2.01	4.35 33.3	3.65 27.9	18.6	21		9 WBS		
7.5	18		3.5x6x4.5				2.96	4.36	18.1 103	15.2 86.6	40.4	37	96	9 WB		
							3.87	6.38	37.4 192	31.4 161	59.0	52		9 WBY		
							2.53	2.86	7.38 54.3	6.19 45.6	35.1	43		12 WBS		
8	24	-							4.10	5.73	26.4 150	22.1 126	70.2	71	137	12 WB
			4.5x8x4.5							5.45	8.60	57.1 292	47.9 245	105	106	
			полол-по	M5	15	40	5.15	5.91	22.9 146	19.2 122	125	98		15 WBS		
9.5	42	23					7.49	10.1	62.2 335	52.2 281	215	148	286	15 WB		
							9.95	15.2	134 663	113 556	323	216		15 WBY		


Les guides linéaires SBC ont été conçus pour mettre en relation 2 plans parallèles animés d'un mouvement de translation. Les contacts avec les rails de guidage se font en deux points : l'utilisation de contacts circulaires permet d'absorber les déformations élastiques et entraîne un fonctionnement sans à-coup.

Patins et rails sont interchangeables et peuvent aisément être fixés par leur base. Les glissières SBC sont en outre d'une structure très compacte.



A11

www.rodavigo.net

Caractéristiques

Positionnement précis.

Grâce à une faible différence entre le frottement statique et dynamique, nos glissières possèdent un cœfficient de frottement inférieur à $0,004~(\mu)$, qui ajouté à une réponse fidèle au moindre mouvement du système d'entraı̂nement, permet un positionnement précis.

Réduction du coût de production et de la consommation d'énergie.

Le faible cœfficient de frottement de nos glissière linéaires permet la miniaturisation du système de commande et permet l'utilisation de grandes vitesses de déplacement, réduisant ainsi la consommation d'énergie et augmentant la productivité de la machine.

Conservation de la précision dans le temps.

Le faible cœfficient de frottement réduit d'autant l'usure de nos guides linéaires et leur permet de conserver la précision durant de nombreuses heures de fonctionnement.

Installation facile.

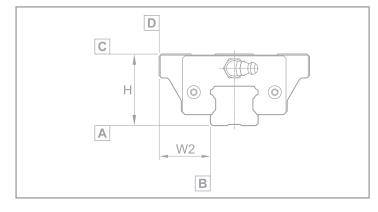
Le montage des éléments rapportés nécessite seulement le serrage des vis situées sur le dessus et le dessous de la pièce, ce qui confère à nos guidages linéaires un mouvement rectiligne de grande précision.

Amélioration.

Nos guides linéaires améliorent la fiabilité globale de la machine, si l'on base le calcul de la durée de vie de la machine sur le nombre de cycles.

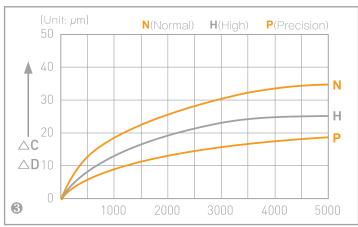
A13

• TOLERANCE DE PARALLELISME


Tolérance de parallélisme (µm)

• Trois classes de précision au programme de fabrication (sur stock classe N).

www.rodavigo.net


- Tolérance associée à chaque plan.
- Mesure prise au centre du patin.
- 2 Mesure prise au centre du patin sur une position du rail.
- 3 Appliqué à l'ensemble du rail.

	Tolérand	e de par	allélisme			
	Ν	Н	Р			
Mesure de H et W2 1	± 100	± 40	± 20			
Différence maximale de H et W2 mesurée par rapport à deux patins solidaires du même rail 2	30	15	7			
Plan C et D 3	(Se référer au dessin 3)					

(en µm)

Plans de référence C et D

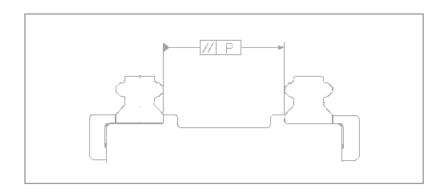
Rail avec fixations par le dessous

Dimensions des fixations des rails SBI .. B Voir les tableaux dimentionnelles des patins

Nota: Les rails SBI.. B sont prévus pour pouvoir être assemblés avec tous les patins de la série SBI. Ils peuvent également (sur demande) avoir un revêtement anti-corrosion, voir page A32.

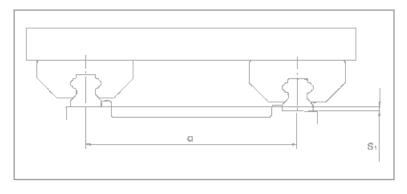
Références	G	F	S	h 2	Poids Kg/m
SBI 15 B	20	60	M5X0,8	8	1,39
SBI 20 B	20	60	M6	9	2,37
SBI 25 B	20	60	M6	9	3,26
SBI 30 B	20	80	M8	12	4,63
SBI 35 B	20	80	M8	12	6,45
SBI 45 B	22,5	105	M12	18	10,49

Dimensions: mm


TOLERANCES ADMISSIBLES DES SURFACES DE MONTAGE

Tolérance de parallélisme (P) admissible entre deux rails

Normalement les défauts des surfaces de montage peuvent engendrer une résistance au roulement ou un léger accroissement de la précharge. Grâce au facteur d'auto ajustement des glissières SBC, la résistance au roulement et la durée de vie ne seront pas affectées, à condition de respecter les tolérances indiquées dans le tableau suivant.


	Tolérance d	de parallélisme c	admissible (P)						
Taille	Jeu (patin)								
	K 1	K ₂	Кз						
15	25	18							
20	25	20	18						
25	30	22	20						
30	40	30	27						
35	50	35	30						
45	60	40	35						
55	70	50	45						
65	80	60	55						

Unit: µm

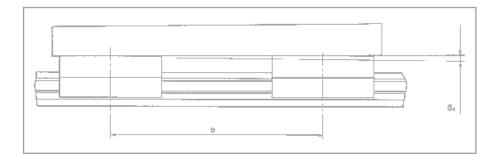
• ECART ADMISSIBLE (S1) ENTRE LES DEUX PLANS DE FIXATION

	Jeu (patin)								
Constante	Kı	K ₂ (0.05C)	K₃ (0.08C)						
Υ	0.0004	0.00026	0.00017						

$$S1 = a \times Y$$

S1: Ecart admissible entre les deux

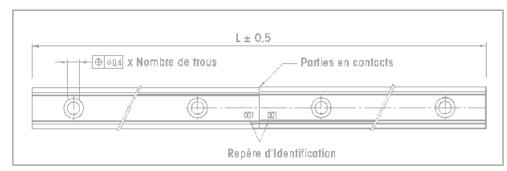
plans de fixation.


a : Distance entre deux rails.

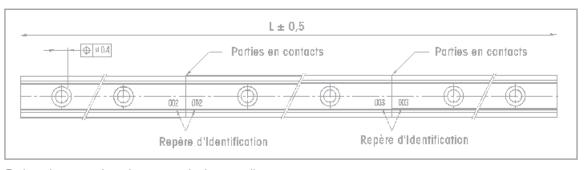
Y: Constante.

TOLERANCES ADMISSIBLES DES SURFACES DE MONTAGE

Ecart admissible (S2) entre les deux plans de fixation


 $S_2 = b \times 0.00004$

S2: Ecart admissible (mm)


b : Distance entre deux patins sur le même rail

Raboutage des rails

Les parties en contact des deux rails portent la même identification.

Raboutage entre deux rails.

Raboutage entre deux ou plusieurs rails.

• PRECHARGE ET DEFORMATION

Précharge

Le déplacement effectué par le patin sous chocs externes ou vibrations est appelé jeu de fonctionnement. Pour le réduire, effectuer le montage en respectant les valeurs ci-dessous.

Sélection du jeu radial

	Classe normale K ₁	Précharge légère K2	Précharge importante K ₃
Conditions d'utilisation	 A l'endroit où la direction de la force est constante, chocs et vibrations sont négligeables 2 guides en parallèles. Aux endroits où la rigidité de la fixation importe peu et où la résistance au mouvement est faible. 	 Aux endroits où la fixation doit être rigide et où la résistance au mouvement est faible. Aux endroits où le système encaisse des forces obliques. 	 Aux endroits soumis à chocs et vibrations où puissance et intensité sont requises. Machines-outils.
Exemples d'application	 Machines à souder, machines à emballer, axes X et Y pour les machines en général, porte-outils automatiques, équipement de changement d'outil, équipements divers. 	 Axes de transmission des meuleuses, machines à emballer, robots industriels, équipements pour les machines à usinage grande vitesse, machine à commande numérique, axe Z pour les machines en général, axes X et Y de précision. 	Transferts numériques, arbres de trans- mission à basse vitesse, axe principal des perceuses, axe Z sur les machines- outils.

Précharge

Référence	Valeur de précharge
K₀ (jeu 0)	jeu avec 0.01 mm
K1 (normal)	0.00 ~ 0.02C
K2 (légère)	0.04 ~ 0.06C
K₃ (forte)	0.08 ~ 0.10C

C (kN): charge dynamique de base K_3 : non disponible en taille 15

RESISTANCE AU FROTTEMENT

En raison du faible cœfficient de frottement statique et dynamique caractérisant nos guides, le système de guidage minimise les pertes d'efforts et la hausse de température. Ceci permet aussi aux machines de garantir un positionnement extrêmement précis. La résistance au frottement dépend aussi de la charge, de la précharge ainsi que de la lubrification et de la vitesse de déplacement. En général, pour de faibles charges et de grandes vitesses de déplacement, la résistance au frottement dépend des caractéristiques de lubrification, alors qu'elle variera en fonction de la charge pour des charges moyennes et une faible vitesse de déplacement.

www.rodavigo.net

La résistance au frottement peut s'exprimer en fonction des facteurs suivants :

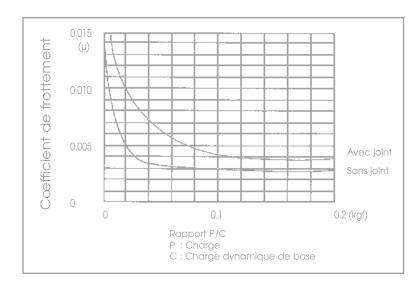
 $F = \mu P + f$

F: Résistance au frottement

μ: Cœfficient de frottement

P: Charge

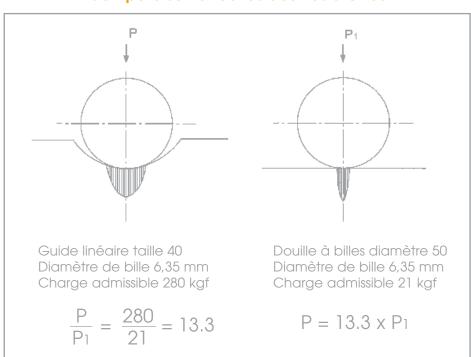
f : Résistance avec joint d'étanchéité


Dans le cas de la présence d'un joint d'étanchéité, la résistance propre du joint doit être ajoutée à la résistance totale du frottement.

La résistance du joint varie selon la surface de contact, la pression et la lubrification.

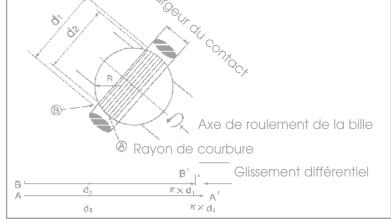
- Formule valable à condition d'un montage et d'une lubrification normale.
- S'il y a joint, ajouter :

SBI-15 - 200g	SBI-35 - 400g
SBI-20 - 220g	SBI-45 - 400g
SBI-25 - 300g	SBI-55 - 750g
SBI-30 - 350g	SBI-65 - 850g


CŒFFICIENT DE FROTTEMENT

SURFACE DE CONTACT

Caractéristiques des Guides Linéaires


Comparaison avec les douilles à billes

Deux points de contact

- 1. La bille a deux points de contact, comme le montre la figure ci-contre, en condition de charge et de précharge. Le glissement différentiel (d1, d2) très faible permet à la bille un déplacement régulier.
- 2. Le rayon de courbure du rail de 52 % à 53 % permet une répartition optimale des efforts.
- 3. Les 4 surfaces de contact circulaires donnent une grande rigidité en cas de précharge suffisante.
- 4. Ces surfaces courbes autorisent la déformation élastique de la bille.

Cela permet une tolérance au montage et rend le mouvement régulier.

DUREE DE VIE

1. Durée de vie des guides linéaires.

En raison des contraintes répétées, une partie du chemin de roulement peut s'effriter. Nous définissons la durée de vie par la distance totale parcourue (base de 50 km) atteinte avant que ne se produise la première usure, que ce soit sur le rail ou sur la bille.

www.rodavigo.net

2. Durée de vie nominale.

Nous définissons la durée de vie par la distance totale parcourue sans usure par 90 % d'un groupe de glissières identiques travaillant dans les mêmes conditions.

• Durée de vie nominale en heure

$$L = (C/Pc)^3 \times 50 \text{ km}$$

: Durée de vie nominale (Km) C: Charge dynamique de base (kgf)

Pc: Charge (kgf)

$$Lh = \frac{L \times 10^3}{2 \times l_s \times n_1 \times 60}$$

Lh: Durée de vie nominale (h) L : Durée de vie nominale (km)

ls : Course (mm)

n1: Nombre de cycle / mm

3. Charge dynamique de base C.

La charge dynamique de base C est une charge constante appliquée selon une direction unique qui entraîne une durée de vie nominale de 50 km (pour un système à billes).

4. Calcul de la durée de vie.

Lorsque nous utilisons le guidage linéaire, nous devons prendre en compte la charge appliquée.

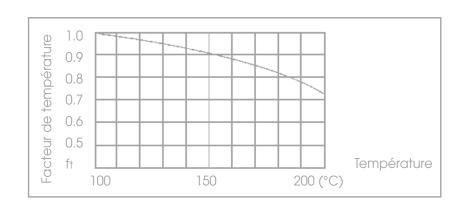
En fonctionnement, le système de guidage linéaire est soumis à d'imprévisibles vibrations et contraintes. De plus, la dureté et la chaleur du chemin de roulement réduisent sa durée de vie. La formule suivante englobe tous ces facteurs :

$$L = \left(\frac{f_h \times f_t \times f_c}{f_w} \times \frac{C}{P_c} \right)^3 \times 50 \text{ km}$$

L : Durée de vie nominale (km) C: Charge dynamique de base (kgf)

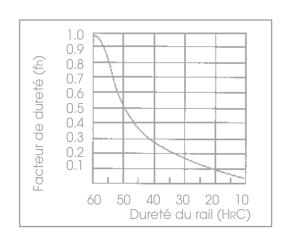
Pc: Charge (kgf)

fh: Facteur de dureté


ft: Facteur de température

fc: Facteur de contact

fw: Facteur de charge


Facteur de température, fr

Si la température de la glissière dépasse 100° C, la dureté du patin et du rail peuvent diminuer, diminuant ainsi la charge admissible et la durée de vie.

• Facteur de dureté, fn

Dans le but d'obtenir une charge optimale garantissant un fonctionnement normal du guide, il faut maintenir la dureté du rail entre 58 et 62 HRC.

• Facteur de contact, fc

Lorsque deux ou plusieurs patins sont montés sur un même rail, il est difficile d'obtenir une répartition des charges uniformes à cause des forces inhérentes aux erreurs de montage. La charge dynamique de base, C, et la charge statique de base Co sont alors multipliées par les facteurs de position suivant :

Nombre de patins juxtaposés	Facteur de contact (fc)
1	1.00
2	0.81
3	0.72
4	0.66
5	0.61

• Facteur de charge, fw

Habituellement, les machines travaillant en va et vient à grande vitesse, engendrent des vibrations difficiles à quantifier. En conséquence, le tableau suivant contient des valeurs expérimentales.

Chocs et vibrations	Vitesse	Vibrations mesurées	fw		
Absence de chocs ou vibrations externes	Faible vitesse V ≤ 15 m/min	G ≤ 0.5	1 ~ 1.5		
Absence de chocs ou vibrations significatifs	Vitesse moyenne 15 < V <u>≤</u> 60 m/min	0.5 < G ≤ 1.0	1.5 ~ 2.0		
Avec chocs et vibrations externes	Grande vitesse V > 60 m/min	1.0 < G ≤ 2.0	2.0 ~ 3.5		

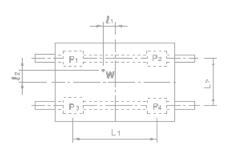
A21

CALCUL DE LA CHARGE APPLIQUEE

La variation de la charge appliquée au système rail / patin dépend de la localisation du centre de gravité, de la direction des forces, des changements de vitesses, etc... Il est donc nécessaire de prendre en compte les considérations ci-dessous avant de choisir la taille du guide linéaire.

www.rodavigo.net

Se référer aux exemples 1 à 7 pour calculer la charge :

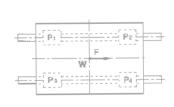

W: Charge (kgf)

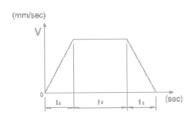
F: Entrainement (N) G: Gravité (mm/s2) Ln: Distance (mm) Pn: Charge radiale (kgf) R: Réaction du support (N) Pnt: Charge latérale (kgf) Vn: Vitesse (mm/s) Pm: Charge principale (kgf)

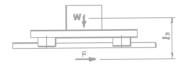
Position	du	guide	linéaire

Formules de calcul de la charge

< Axe horizontal >




$$P_2 = \frac{W}{4} - \frac{W\ell_1}{2L_1} + \frac{W\ell_2}{2L_2}$$


$$P_3 = \frac{W}{4} + \frac{W\ell_1}{2L_1} - \frac{W\ell_2}{2L_2}$$

$$P_4 = \frac{W}{4} - \frac{Wl_1}{2l_1} - \frac{Wl_2}{2l_2}$$

< Axe horizontal avec forces d'inertie >

$$P_1 = P_2 = P_3 = P_4 = \frac{W}{4}$$

$$P_1 = P_3 = \frac{W}{4} + \frac{VW l_3}{2L_{1gt}}$$

$$P_2 = P_4 = \frac{W}{4} - \frac{VW\ell_3}{2L_{1gt}}$$

$$P_1 = P_3 = \frac{W}{4} \; - \; \frac{VW \ell_3}{2L_{1gt}} \label{eq:p1}$$

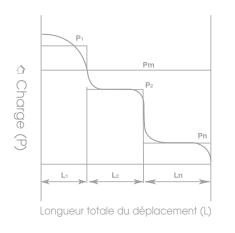
$$P_2 = P_4 = \frac{W}{4} + \frac{VW\ell_3}{2L_{1gt}}$$

CALCUL DE LA CHARGE APPLIQUEE

Position du guide linéaire Formules de calcul de la charge < Axe horizontal > $P_1 = P_2 = P_3 = P_4 = \frac{W}{2} \times \frac{\ell_3}{L_1}$ $P_{1t} = P_{3t} = \frac{W}{4} + \frac{W\ell_1}{2L_1}$ $P_{2t} = P_{4t} = \frac{W}{4} - \frac{W\ell_1}{2L_1}$ < Axe vertical > $P_1 = P_2 = P_3 = P_4 = \frac{W \ell_3}{2 L_1}$ $P_{1t} = P_{2t} = P_{3t} = P_{4t} = \frac{W\ell_2}{2I_1}$ < Axe horizontal avec forces externes > $P_1 = P_2 = P_3 = P_4 = \begin{pmatrix} \frac{R}{2} & \chi & \frac{\ell_3}{L_2} \end{pmatrix} + \frac{W}{4}$ $P_{1t} = P_{3t} = \frac{R}{4} + \frac{R l_1}{2L_1} + \frac{W}{4}$ $P_{2t} = P_{4t} = \frac{R}{4} - \cdots + \frac{W}{4}$

CALCUL DE LA CHARGE PRINCIPALE

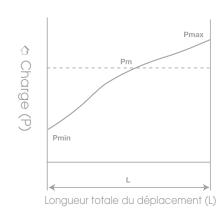
La composition des forces appliquées au système de guidage linéaire varie en fonction de nombreux facteurs. Les nombreux cas de charge doivent être pris en compte pour le calcul de la durée de vie des glissières.

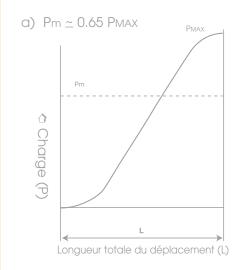

www.rodavigo.net

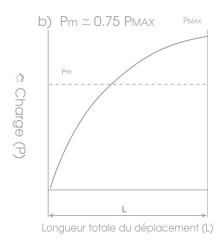
• Forces en escalier

$$Pm = \sqrt[3]{\frac{1}{L} (P_1^3 \times L_1 + P_2^3 \times L_2 + P_n^2 \times L_n)}$$

Pm: charge principale : charge fluctuante


: longueur total de déplacement (m) : longueur supportant la chage Pn (m)


• Forces linéaires variantes


$$Pm \simeq \frac{1}{3} (Pmin + 2 \times Pmax)$$

Pmin: force minimum (kgf) Pmax: force maximum (kgf)

Forces sinusoidales variantes

FIXATION

PROCEDURE DE MONTAGE

Normalement, nous utilisons les vis destinées à cet effet pour la fixation du patin sur la structure, mais il y a d'autres moyens. Par exemple, quand une charge horizontale est appliquée à l'ensemble, ou en cas de chocs et de vibrations, la méthode la plus adaptée peut être inspirée des exemples ci-dessous, selon les conditions de fonctionnement.

METHODE DE SERRAGE HORIZONTAL

Cette méthode rend la fixation aisée.

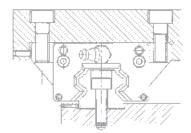
Précision et puissance transmise sont conservées en dépit des vibrations et des chocs dûs au fonctionnement.

• Fixation avec vis de pression.

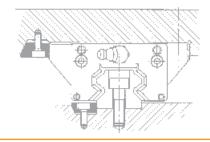
Il s'agit de la méthode la plus utilisée. Fixer les rails sur le support et le plateau sur les patins. Serrer un peu plus les vis liant plateau et patins.

② Fixation au moyen de plaques de pression.

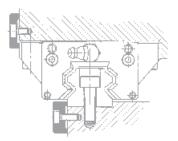
Lorsque l'on ne dispose pas d'assez de place sur la table pour la fixation du rail, on peut utiliser des plaques de pression, leur nombre variant en fonction du besoin (rigidité accrue par exemple).

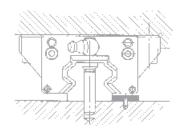

S Fixation au moyen de lardons.

La pression horizontale est assurée par le serrage de la vis. Attention aux dimensions de la section des lardons.


Goupilles de positionnement.

Le percage des trous de goupilles sont à réaliser après avoir réglé et monté de facon définitive les rails, afin de permettre un démontage ultérieur (lors d'un entretien par exemple) et remontage exactement en lieu et place. Cette solution n'est à prendre que si les autres systèmes de fixation ne peuvent être retenus.

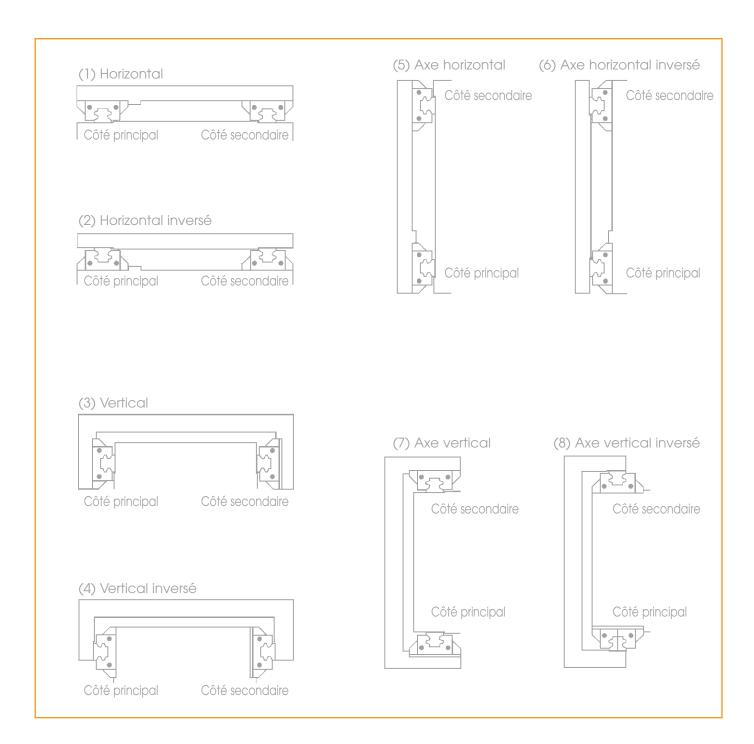

• Fixation avec vis de pression


3 Fixation au moyens de lardons

2 Fixation au moyen de plaques de pression

4 Goupilles de positionnement

PROCEDURE DE MONTAGE


- 1. En premier lieu, s'assurer de la propreté des différents éléments.
- 2. Enduire chaque surface d'huile de faible viscosité. Placer le rail sur la surface de support, mettre en place les vis supérieures.
- 3. Mettre en place les vis de maintien latéral de manière à ce qu'elles soient en léger contact avec le rail. En commençant par le milieu, serrer (légèrement) les vis supérieures du rail avec la clef appropriée.
- 4. Placer précautionneusement la table sur les patins. Mettre les vis en position.
- 5. Positionner la table en serrant les vis latérales pour fixer le rail. Serrer les vis supérieures avec une clef dynamométrique selon le couple spécifié.
- 6. Suivre l'ordre indiqué pour la fixation des autres patins.

POSSIBILITES DE MONTAGE

Il y a plusieurs moyens de monter les rails. Comme indiqué ci-dessous, les cas (1), (3), (4) et (5) sont les plus utilisés.

	Horizontal	Vertical	Axe horizontal	Axe vertical
Mouvement de la table	(1)	(3)	(5)	(7)
Mouvement du rail	(2)	(4)	(6)	(8)

LUBRIFICATION

Le but principal de la lubrification est de prévenir les dégradations en réduisant les phénomènes de frottement et d'usure. La méthode de lubrification influence la performance de la glissière au même titre que le lubrifiant lui-même.

www.rodavigo.net

Prenez bien en compte la charge et la vitesse de fonctionnement.

Mais dans la plupart des cas, la graisse Alvania (AV2) convient.

Si la charge est élevée, utiliser de la graisse supportant les hautes pressions. Dans le cas d'une lubrification à l'huile, une charge importante requiert un degré de viscosité élevé. Pour des vitesses faibles, nous recommandons un faible degré de viscosité.

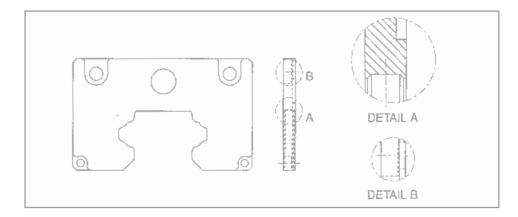
DISPOSITIFS DE GRAISSAGE ET MODES D'APPLICATION

Document à télécharger sur notre site www.ecmu-csr.com

OPTIONS

Racleurs

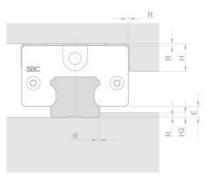
Pour enlever efficacement les boues ou corps étrangers en cas de haute température, nous pouvons fournir des racleurs en métal qui réduisent la fatigue excessive à laquelle est soumis le joint d'étanchéité près des zones telle que ligne de soudure, etc...
Nous vous recommandons de surveiller périodiquement l'usure du racleur.


Graisseur latéral

Lorsque l'introduction de graisse est difficile ou que le bloc est difficilement accessible, vous pouvez injecter facilement le lubrifiant par le graisseur latéral. Cet élément convient aussi parfaitement à un graissage centralisé.

Patin haute température (HT)

Joint racleur à double lèvres

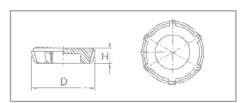


A29

HAUTEUR D'EPAULEMENT ET RAYON DE RACCORDEMENT

Lors de l'installation, il est primordial de connaître en premier lieu la hauteur de l'épaulement. En outre, prendre garde aux rayons de raccordement des différentes parties des supports.

www.rodavigo.net



Numéro de série	Rayon de raccordement R	Hauteur d'épaulement H	Hauteur d'épaulement H2	E
15	0.6	7	2.5	3
20	1.0	8	3.5	4.6
25	1.0	10	4.5	5.5
30	1.0	11	5	7
35	1.0	13	6	7.5
45	1.6	16	8	9
55	1.5	8	10	_
65	1.5	10	10	-

BOUCHONS

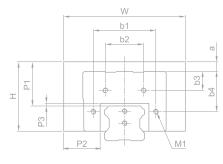
Parfois, des corps étrangers s'introduisent dans les trous de fixation supérieure du rail et contaminent l'intérieur du patin lors de son passage au-dessus de ces trous. En cas de

forte présence de substances étrangères, vous pouvez les obstruer avec nos bouchons de protection en résine synthétique antiabrasive.

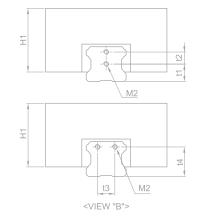
Références	Compatible avec :	D	Н
RC-15	SBI15	7.7	1.5
RC-20	SBI20	9.7	3.5
RC-25	SBI25	11.2	2.8
RC-30	SBI30, 35	14.2	3.7
RC-45	SBI45	20.2	4.7
RC-55	SBI55	23.5	5.7
RC-65	SBI65	26.5	5.7

COUPLE DE SERRAGE DES ECROUS

(Kg f.cm)

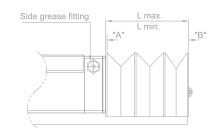

Ecrous	M3	M4	M5	M6	M8	M12	M14	M20
Couple de serrage dans l'acier	20	40	80	130	300	1 203	1 600	3 896
Couple de serrage dans la fonte	13	28	60	94	205	800	1 071	2 601
Couple de serrage dans l'aluminium	10	21	45	70	150	600	800	1 948

SOUFFLETS DE PROTECTION


Model	Applicabl	W	Н	H1	P1	P2	P3	a (*Dimensions according to block types)					rpes)	b1	b2
number	e type	VV	П	П	PI	F2	P3	FV	SV	CL	FL	SL	HL	DI	DZ
SH15 A	SBI15	50	25	25	15	15.5	1	4	4	-	4	0	4	26	
SH15 DA	30113	30	20	20	10	10.0		-1	-1	-	-1	-5	-1	20	-
SH20 A	- SBI20	60	29	31	17	18	4	5.5	5.5	5.5	3.5	3.5	-	34	
SH20 DA	30120	00	24	26	12	10		-	-	-	-1.5	-1.5	-	(32)	-
SH25 A	SBI25	70	35	35	20	21	1	7	7	7	4	0	4	36	
SH25 DA	30123	70	30	30	15	41	'	-	-	-	-1	-5	-1	30	_
SH30 A	SBI30	80	36	36	20	- 23	1	-	-	-	1	-2	1	49	
SH30 DA	30130	00	33	33	17	20	'	-	-	-	-2	-5	-2	43	_
SH35 DA	SBI35	85	39	39	20	22.5	1	-	-	-	-2	-9	-2	56	-
SH45 DA	SBI45	100	48	48	25	25	1	-	-	-	-3	-13	-3	72	-
SH55 DA	SBI55	110	56	56	30	25	1	-	-	-	-2	-12	-2	74	53.4
SH65 DA	SBI65	130	69	69	35	30	1	-	-	-	-2	-2	-	90	64

^{*} The dimension in column "a, b3 and b4" are common for FL=FLL, SL=SLL and HL=HLL, HLS.

<VIEW "A">



															(Unit : mm)
	b3				b	4			t1	t2	t3	t4	МхВо	It length	A Extended
FL	SL	HL	FV	SV	CL	FL	SL	HL	L I	LZ.	10	L-T	M1(Block)	M2(Rail)	ratio
-	-	-	13.3	13.3	-	13.3	17.3	13.3	10	-	-	-	M3X16	M4X8	6
-	-	-	14	14	14	16	16	-	6	8	-	-	M3X18	М3Х6	6
-	-	-	16.3	16.3	16.3	19.3	23.3	19.3	10	7	-	-	M3X18	M3X6	7
-	-	-	-	-	-	22.8	25.8	22.8	11	8	-	-	M4X22	M4X8	7
-	-	-	-	-	-	26.5	33.5	26.5	-	-	14	21	M4X22	M4X8	7
-	-	-	-	-	-	33.5	43.5	33.5	-	-	20	25	M4X25	M5X10	7
7	17	7	-	-	-	38.5	48.5	38.5	-	-	26	29	M5X30	M5X10	8
7	7	-	-	-	-	45	45	-	-	-	34	42	M5X35	M5X10	8

Ordering example : $\underline{\text{SH25A}} - \underline{70} / \underline{420}$ 0 **2 3**

- Model number
- Collapsed length (mm)
- Extended length (mm)

H' dimension of SH-DA type is lower than SH-A type

[Calculation of bellows length]

- L_{max} : Extended length (mm)
 L_{min} : Collapsed length (mm)

		Lmin	Lmax	
*	SBI 15, 20	Stroke ÷	5	
*	SBI 25~45	Stroke ÷	6	Lmin + Stroke
*	SBI 55~65	Stroke ÷	7	

^{*} If SH bellows are applying, rail end mounting holes are necessary.

 $^{^{\}star}$ When you select SH bellows, please select the side grease fitting for lubrication.

^{*} Please contact SBC for more information.